Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Virol ; 96(5): e0179121, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1799229

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal influenza viruses are cocirculating in the human population. However, only a few cases of viral coinfection with these two viruses have been documented in humans with some people having severe disease and others mild disease. To examine this phenomenon, ferrets were coinfected with SARS-CoV-2 and human seasonal influenza A viruses (IAVs; H1N1 or H3N2) and were compared to animals that received each virus alone. Ferrets were either immunologically naive to both viruses or vaccinated with the 2019 to 2020 split-inactivated influenza virus vaccine. Coinfected naive ferrets lost significantly more body weight than ferrets infected with each virus alone and had more severe inflammation in both the nose and lungs compared to that of ferrets that were single infected with each virus. Coinfected, naive animals had predominantly higher IAV titers than SARS-CoV-2 titers, and IAVs were efficiently transmitted by direct contact to the cohoused ferrets. Comparatively, SARS-CoV-2 failed to transmit to the ferrets that cohoused with coinfected ferrets by direct contact. Moreover, vaccination significantly reduced IAV titers and shortened the viral shedding but did not completely block direct contact transmission of the influenza virus. Notably, vaccination significantly ameliorated influenza-associated disease by protecting vaccinated animals from severe morbidity after IAV single infection or IAV and SARS-CoV-2 coinfection, suggesting that seasonal influenza virus vaccination is pivotal to prevent severe disease induced by IAV and SARS-CoV-2 coinfection during the COVID-19 pandemic. IMPORTANCE Influenza A viruses cause severe morbidity and mortality during each influenza virus season. The emergence of SARS-CoV-2 infection in the human population offers the opportunity to potential coinfections of both viruses. The development of useful animal models to assess the pathogenesis, transmission, and viral evolution of these viruses as they coinfect a host is of critical importance for the development of vaccines and therapeutics. The ability to prevent the most severe effects of viral coinfections can be studied using effect coinfection ferret models described in this report.


Subject(s)
Antibodies, Viral/blood , COVID-19/prevention & control , Coinfection/prevention & control , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , COVID-19/immunology , Female , Ferrets/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Orthomyxoviridae Infections/immunology , Vaccination , Virus Shedding
2.
Sci Rep ; 12(1): 2594, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1692553

ABSTRACT

Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.


Subject(s)
Antibodies, Monoclonal/metabolism , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Models, Immunological , SARS-CoV-2/immunology , Animals , Dogs , Drug Repositioning , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Madin Darby Canine Kidney Cells , Molecular Targeted Therapy , Neutralization Tests , Polysaccharides/metabolism
3.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Pseudotyping
4.
J Nippon Med Sch ; 88(6): 524-532, 2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1581928

ABSTRACT

BACKGROUND: Behavioral changes among Japanese, along with the coronavirus disease 2019 (COVID-19) epidemic, may affect the seasonal influenza epidemic in Japan and change influenza vaccine effectiveness (VE). METHODS: This single-center, test-negative case-control (TNCC) study estimated influenza VE in children for the first influenza season (2019/20) to overlap the COVID-19 epidemic in. Effects of prior influenza infection and vaccination in children were assessed for the 2019-2020 season. RESULTS: Among 386 children, adjusted VE was significant for influenza A/H1N1 (45.5%; 95% confidence interval [CI]: 2.0-69.7) and influenza B (66.7%; 95% CI: 35.9-82.7). Among patients aged 0-6 years, adjusted VE was significant for influenza A (total: A/H1N1+A/H3N2) (65.0%; 95% CI: 22.2-84.3), influenza A/H1N1 (64.8%; 95% CI: 16.9-85.1) and influenza B (87.4%; 95% CI: 50.5-96.8). No VE was observed in patients aged 7-15 years. Administration of two vaccine doses tended to decrease incidences of influenza A (total) and influenza A/H1N1 in patients aged 0-6 years. The adjusted odds ratios (ORs) of influenza B infection in patients, who had influenza during the previous season, were significantly lower among all participants (0.29; 95% CI: 0.11-0.78) and patients aged 7-15 years (0.34; 95% CI: 0.12-0.94). The adjusted ORs of influenza infections were not significant in patients vaccinated during the previous season. CONCLUSIONS: TNCC-based estimates of influenza VE were consistent despite the overlapping COVID-19 epidemic.


Subject(s)
COVID-19 , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Vaccine Efficacy , COVID-19/epidemiology , Case-Control Studies , Child , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza, Human/epidemiology , Male , SARS-CoV-2 , Seasons , Vaccination
5.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1556620

ABSTRACT

Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age. The antibody response to non-HA antigens was boosted by vaccination. Recombinant expression of 19 vaccine-H1+H3 CR serum monoclonal antibodies (s-mAbs) revealed that they predominantly bound to non-HA influenza proteins. A sizable fraction of vaccine-H1+H3 CR s-mAbs recognized with high affinity the sulfated glycans, in particular sulfated type 2 N-acetyllactosamine (Galß1-4GalNAcß), which is found on egg-produced proteins and thus unlikely to contribute to protection against influenza infection in humans. Antibodies against sulfated glycans in egg-produced vaccine had been identified in animals but were not previously characterized in humans. Collectively, our results provide a quantitative basis for how repeated exposure to split influenza vaccine correlates with unintended focusing of serum antibody responses to non-HA antigens that may result in suboptimal immunity against influenza.


Subject(s)
Antibodies, Viral/biosynthesis , Influenza Vaccines/immunology , Influenza, Human/immunology , Viral Proteins/immunology , Adult , Age Factors , Aged , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/blood , Cohort Studies , Cross Reactions , Eggs/analysis , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Middle Aged , Polysaccharides/immunology , Vaccination
6.
HLA ; 96(3): 277-298, 2020 09.
Article in English | MEDLINE | ID: covidwho-1388402

ABSTRACT

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Subject(s)
Coronavirus Infections/epidemiology , HIV Infections/epidemiology , HLA Antigens/chemistry , Influenza, Human/epidemiology , Pandemics , Peptides/chemistry , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Viral Proteins/chemistry , Africa/epidemiology , Americas/epidemiology , Amino Acid Sequence , Asia/epidemiology , Australia/epidemiology , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Europe/epidemiology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HLA Antigens/classification , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Kinetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Peptides/genetics , Peptides/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Proteins/genetics , Viral Proteins/immunology
7.
PLoS Pathog ; 17(3): e1009407, 2021 03.
Article in English | MEDLINE | ID: covidwho-1338134

ABSTRACT

Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.


Subject(s)
Antibodies, Viral/immunology , HIV-1/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/immunology , Broadly Neutralizing Antibodies , Cross Reactions , HIV Infections/immunology , Humans , Influenza, Human/immunology
9.
J Clin Invest ; 131(8)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1219557

ABSTRACT

A(H3N2) influenza vaccine effectiveness (VE) was low during the 2016-19 seasons and varied by age. We analyzed neutralizing antibody responses to egg- and cell-propagated A(H3N2) vaccine and circulating viruses following vaccination in 375 individuals (aged 7 months to 82 years) across all vaccine-eligible age groups in 3 influenza seasons. Antibody responses to cell- versus egg-propagated vaccine viruses were significantly reduced due to the egg-adapted changes T160K, D225G, and L194P in the vaccine hemagglutinins. Vaccine egg adaptation had a differential impact on antibody responses across the different age groups. Immunologically naive children immunized with egg-adapted vaccines mostly mounted antibodies targeting egg-adapted epitopes, whereas those previously primed with infection produced broader responses even when vaccinated with egg-based vaccines. In the elderly, repeated boosts of vaccine egg-adapted epitopes significantly reduced antibody responses to the WT cell-grown viruses. Analysis with reverse genetic viruses suggested that the response to each egg-adapted substitution varied by age. No differences in antibody responses were observed between male and female vaccinees. Here, the combination of age-specific responses to vaccine egg-adapted substitutions, diverse host immune priming histories, and virus antigenic drift affected antibody responses following vaccination and may have led to the low and variable VE against A(H3N2) viruses across different age groups.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Ovum , Vaccination , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Dogs , Female , Humans , Infant , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Madin Darby Canine Kidney Cells , Male , Middle Aged
10.
Mil Med ; 186(Suppl 1): 76-81, 2021 01 25.
Article in English | MEDLINE | ID: covidwho-1045047

ABSTRACT

BACKGROUND: Respiratory viruses are an important cause of nonbattle injury disease and contribute to the top seven reasons for medical encounters. In the absence of vaccines that provide complete protection against these viruses, viral surveillance can identify disease burden and target virus-specific preventative measures. Influenza infection, in particular, has significant adverse effects on force readiness. METHODS: We tracked the frequency of 16 respiratory viruses at Walter Reed National Military Medical Center tested for during routine patient care using multiplex polymerase chain reaction and rapid antigen testing. We collected data on the date and location of the testing, as well as the age of the individual tested from two consecutive respiratory viral seasons. RESULTS: During the first year of data compilation (2017-2018), 2556 tests were performed; 342 (13.4%) were positive for influenza A and 119 (4.7%) were positive for influenza B. After influenza, the most common families of viruses identified were rhino/enterovirus (490 [19.2%]). During the second year (2018-2019), 4,458 tests were run; 564 (12.7%) were positive for influenza A and 35 (0.79%) were positive for influenza B, while rhino/enterovirus was identified in 690 (15.4%). Influenza peaked early during the 2017-2018 season and later during the 2018-2019 season. Importantly, during the 2017-2018 season, the vaccine was less effective for the H3N2 strain circulating that year and viral surveillance quickly identified a hospital-specific outbreak and a larger disease burden. This was in contrast to the 2018-2019 vaccine which exhibited higher effectiveness for circulating strains. CONCLUSION: Our data highlight the seasonality of respiratory viruses with a focus on influenza. By tracking respiratory viruses in Department of Defense communities, we may be able to predict when influenza may cause the greatest burden for distinct organizational regions and prescribe with greater precision preventative protocols by location, as well as rapidly determine vaccine efficacy. Our current data suggest that when vaccine strains are mismatched, rapid upfront targeting of antivirals may be warranted, but when the vaccine strains are better matched, late season peaks of disease may indicate waning immunity and should be monitored.


Subject(s)
Influenza, Human , Cost of Illness , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Public Health , Seasons
11.
PLoS One ; 16(2): e0247605, 2021.
Article in English | MEDLINE | ID: covidwho-1105820

ABSTRACT

Neutrophils participate in the early phase of the innate response to uncomplicated influenza A virus (IAV) infection but also are a major component in later stages of severe IAV or COVID 19 infection where neutrophil extracellular traps (NETs) and associated cell free histones are highly pro-inflammatory. It is likely that IAV interacts with histones during infection. We show that histone H4 binds to IAV and aggregates viral particles. In addition, histone H4 markedly potentiates IAV induced neutrophil respiratory burst responses. Prior studies have shown reactive oxidants to be detrimental during severe IAV infection. C reactive protein (CRP) and surfactant protein D (SP-D) rise during IAV infection. We now show that both of these innate immune proteins bind to histone H4 and significantly down regulate respiratory burst and other responses to histone H4. Isolated constructs composed only of the neck and carbohydrate recognition domain of SP-D also bind to histone H4 and partially limit neutrophil responses to it. These studies indicate that complexes formed of histones and IAV are a potent neutrophil activating stimulus. This finding could account for excess inflammation during IAV or other severe viral infections. The ability of CRP and SP-D to bind to histone H4 may be part of a protective response against excessive inflammation in vivo.


Subject(s)
C-Reactive Protein/immunology , Histones/immunology , Influenza A virus/immunology , Influenza, Human/immunology , Neutrophils/immunology , Pulmonary Surfactant-Associated Protein D/immunology , Cells, Cultured , Humans , Immunity, Innate , Inflammation/etiology , Inflammation/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/complications
SELECTION OF CITATIONS
SEARCH DETAIL